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in Portugal. These meta-data were modelled using embedding layers, while several 
approaches were taken to model the GPS data directly. The simplest approach (which 
won the competition) was to use a fixed amount of the GPS data as an input directly to 
a feed-forward network. More complicated models recognised that the variable length 
GPS data could be modelled using RNNs, and, therefore, RNN and LSTM networks 
were calibrated on the raw GPS data, with the output of these networks fed into the 
same network structure just mentioned (i.e. including embedding layers for the meta-
data). A variant of these was the highest ranked model within the authors’ test set.

Dong et al. (2016) find that deep learning applied directly to GPS data for the task 
of characterising driving styles does not perform well (whereas in De Brébisson et 
al. (2015) the goal is to predict the destination i.e. the output is in the same domain 
as the input data). Thus, they rely on a similar data summary approach to Wüthrich 
(2017). First, the raw GPS data is segmented into longer trip windows, and shorter 
measurement windows. Within each measurement window, speed and acceleration, 

Figure 16  Mean heatmap for each group shown in Figure 14
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and the change in each of these components over time, and angular momentum is 
calculated, and then, for each of these basic features, statistics (the mean, standard 
deviation, minimum, maximum, median, and 25th and 75th percentiles) are calculated, 
leading to a matrix (or feature-map) of basic movement statistics for each trip window, 
where each row represents a movement statistic, and each column represents time 
(i.e. a new observation window). Since driver behaviour manifests itself over time, 
one would expect that the movement statistics would have some sort of temporal 
structure, which is analysed using either CNNs or RNNs, with a detailed description 
of the application of both methods in the paper. Notably cross-correlation between 
features is not allowed for in either of these models, and, given the performance of the 
v-a heat-maps discussed above, it would seem that this is an omission. The networks 
are trained on a dataset consisting of driver trips with the goal of classifying the driver 
correctly. A variant of the RNN network outperformed all other approaches, including 
a machine-learning baseline. Investigating the learned features, the study concludes 
that the network has automatically identified driving behaviour, such as slowing down 
for sharp turns, or high speed driving on straight roads.

Dong et al. (2017) extend the model of Dong et al. (2016) in several ways, in a 
new network they call ARNet. Their network design, applied to the same movement 
statistic feature matrix, relies exclusively on RNNs (specifically, the GRU of Chung et 
al. (2015)) for driver classification, in a similar setup to Dong et al. (2016), but also 
includes an auto-encoder branch within the network that aims to reconstruct the 
(hidden) layer of the network that represents driving style. The idea of adding the 
auto-encoder to the classification model is explained as follows: the auto-encoder 
is regularised (i.e. the auto-encoder representation is shrunk towards zero), which 
should improve the generalisation of the classification branch of the network to 
unseen data, and the classification branch includes prior information about the driver 
within the network structure, which should improve the auto-encoder representation 
of driving style. ARNet outperforms on the two tasks tested in the research – driver 
classification and driver number estimation, compared to both the shallow and deep 
machine learning baselines also tested in that research.

Wijnands et al. (2018) use an LSTM network to predict whether a driver’s behaviour 
has changed, based on sequences of telematics data, containing, for each sequence, 
counts of acceleration, deceleration and speeding events. An LSTM is trained for each 
driver to classify these sequences of events as belonging to one of three benchmarks, 
one for safe driving, one for unsafe driving and one for the driver under consideration, 
where the benchmarks are themselves based on an insurer’s proprietary scoring 
algorithm. If driver behaviour changes, then the LSTM classification is shown to be 
able to classify the driver’s behaviour as arising from the benchmarks, and not as 
similar to the driver’s own previous driving style.

We refer the interested reader to the review in Ezzini, Berrada and Ghogho (2018) 
for more references of applying machine learning and statistical techniques to these 
types of data.
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Mortality Forecasting
Mortality rates are a fundamental input into actuarial calculations involving the 
valuation and pricing of life insurance products. Mortality improvement rates are used 
by actuaries when modelling annuity products and the results of these models are often 
highly sensitive to this input, while the stochastic variation of the forecasts around the 
mean is used for regulatory and economic capital modelling. Various methods are 
used for deriving mortality rate forecasts, with the Lee and Carter (1992) and Cairns, 
Blake and Dowd (2006) models often used as standard reference points in the actuarial 
literature. For a benchmark in this section, we focus on the Lee-Carter model, which 
models log mortality rates (the force of mortality) as a set of baseline average (log) 
mortality rates for a period which vary non-linearly through time at a rate of change 
determined for each age multiplied by a time index, as follows:

( ),ln .x t x t xa bm k= +

where μx,t is the force of mortality at age x in year t, ax is average log mortality rate 
during the period at age x, κt is the time index in year in year t and bx is the rate of 
change of log mortality with respect to the time index at age x. Often, mortality models 
are first fit to historical mortality data and the coefficients (in the case of the Lee-
Carter model, the vector κ) are then forecast using a time series model, in a second 
step. Many popular mortality forecasting models can be fit using GLMs and GNMs13 
(Currie, 2016) and an R package, StMoMo, automates the model fit and forecasting 
process (Villegas, Kaishev & Millossovich, 2015).

Hainaut (2018a) is a recent study that uses auto-encoder networks (see Section 3 
above) to forecast mortality (these are referred to as “neural network analyzers” in the 
paper). Mortality rates in France in the period 1946–2014 are used, with the training 
set being the rates in the period 1946–2000 and the test set covering 2001–2014. The 
base-line models against which the neural model is compared are the basic Lee-Carter 
model, fit using Singular Value Decomposition, the Lee-Carter model fit with a GNM 
and lastly, an enhanced Lee-Carter model with cohort effects, again fit with a GNM.

For the neural model, a series of shallow auto-encoders (similar to those shown in 
Figure 4) with different numbers of neurons in the hidden layers, using the hyperbolic 
tangent activation function, are fit. In this study, auto-encoders are viewed through the 
lens of non-linear PCA, and, for more details on this connection, see Efron and Hastie 
(2016: Section 18). Before fitting the networks, the mortality rates are standardised by 
subtracting, for each log mortality rate ( ),ln x tm , the average mortality over the period, 
ax, and, therefore the aim of the model is to replace the simple linear time-varying 

13 Note that the Lee-Carter model cannot be fit with a GLM due to the multiplicative nature of the term 
κt.bx, which is comprised of two variables that must each be estimated from the data. In the GLM 
formulation in R, an interaction term between the variables Year and Age could be fit, but, for this term 
of the model, this specification would require t.x effects to be fit compared to the t + x effects in the Lee-
Carter model.
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component of the Lee-Carter model, κt.bx, with a non-linear time-varying function 
learned using an auto-encoder. Unlike most modern applications of neural networks, 
in this study the calibration is performed using genetic evolution algorithms, instead of 
back-propagation, which is justified in the study since the input to the network is high-
dimensional. Another interesting aspect of this network is that the network is not fully 
connected to the inputs, but rather the neurons in the first hidden layers are assigned 
exclusively to a set of mortality rates, say those at ages 0–4 for the first neuron, those 
at ages 5–9 for the second and so on (i.e. the neurons in the first layer are only locally 
connected). This exploits the fact that mortality rates at nearby ages are similar, and 
should lead to a more easily trained network. The encoded mortality is then forecast 
using a random walk model with drift. The study provides several examples that show 
that the predictive power of the mortality forecasts based on neural models is as good 
as or better than the best performing of the Lee-Carter models.

ANALYSIS USING KERAS
In this section, we attempt to produce similar results with Keras, noting that the 
relatively complicated genetic evolution optimisation scheme of Hainaut (2018a) is 
not supported within the Keras package, but only back-propagation and associated 
optimisers are supported. We also note that the network in the previous example 
benefits from substantial manual feature engineering, in that the network is fit only 
to the time varying component of mortality, and, furthermore, the first hidden layer 
is only locally connected. The paradigm of representation learning would, however, 
seem to indicate that the network should be left to figure out these features by itself, 
and perhaps arrive at a more optimal solution in the process.

Therefore, a first attempt at the problem of mortality forecasting applied greedy 
unsupervised learning to train fully connected auto-encoders on mortality data (the 
central rate of mortality, mx) from England and Wales in the period 1950–2016, covering 
the ages 0–99, sourced from the Human Mortality Database (HMD) (Wilmoth & 
Shkolnikov, 2010). The training dataset was taken as mortality in the period 1950–
1999 and the test dataset was in the period 2000–2016, and the logarithm of mx was 
scaled so as to lie in the interval [0,1]. The neural networks were fit exclusively on this 
scaled dataset and were compared to a baseline Lee-Carter model fit directly to the 
raw mx using the gnm package (Turner & Firth, 2007), and forecast using exponential 
smoothing as implemented in the forecast package (Hyndman et al., 2015).

The auto-encoders used hyperbolic tangent activations, and each layer was fit 
for 50 000 epochs using the Adam optimiser (Kingma & Ba, 2014) implemented in 
Keras, with a learning rate schedule hand designed to minimise the training error. The 
encoded mortality curves were forecast using a random walk with drift to produce 
forecasts for each of the years in the period 2000–2016. These results, referred to 
as Auto-encoder, as well as the Lee-Carter baseline are shown in Table 6. The auto-
encoder forecasts outperform the baseline Lee-Carter model, showing that a viable 
auto-encoder model can be fit in Keras without too much manual feature engineering.
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Table 6 Mortality forecasting – Out-of-sample MSE

Model MSE – Out-of-sample
Lee-Carter 0.2624 

Auto-encoder 0.1170 

Deep_reg 0.0814 

Deep_reg_hmd 0.1025 

However, it is important to note that fitting the auto-encoders is difficult and 
computationally expensive, and the results produced on the out-of-sample data can 
be variable, with worse performance than reported in the table possible. One way 
of reducing the variability is to average the results of several deep models (Guo & 
Berkhahn, 2016), but a comparison of the resulting ensemble model to the Lee-Carter 
model would be unfair. Therefore, we also demonstrate a different approach using 
deep learning for mortality forecasting and, in the following, show how the Lee-Carter 
model could be fit and extended using embedding layers.

The Lee-Carter model can be expressed in functional form as
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up to a maximum age n, and similarly for κt and bx. Rather than specify this particular 
functional form, a neural network can be used to learn the function ),( txf  directly, 
by using age and calendar year as predictors in a neural network that is then trained to 
predict mortality rates. This network was fit on the same dataset as the auto-encoders, 
and consisted of an embedding layer for age and two hidden layers of 32 neurons with 
the ReLu activation. The year variable was left as a numerical input to the network, 
and is used to forecast future mortality rates. This network is referred to as Deep_reg 
in Table 6.

A similar network was fit to the entire HMD dataset at once, with an embedding for 
the Country to which the mortality rates relate. This network is referred to as Deep_
reg_hmd in Table 6. It can be seen that of all the networks tested, Deep_reg outperforms 
the others, followed closely by Deep_reg_hmd. However, as discussed next, on the 
long-term forecast of rates in 2016 (forecast using data up to 1999), the Deep_reg_hmd 
network outperforms the other networks, followed closely by the auto-encoder.

Figures 17 and 18 show the forecasts of mortality in 2000 (i.e. a one-year horizon) 
and 2016 (i.e. a 16-year horizon) produced using the models described in this section. 
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Figure 18  Forecasts of mortality in 2016 using the models described in this section, 
log scale

Figure 17  Forecasts of mortality in 2000 using the models described in this section, 
log scale
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All of the models are quite close to actual mortality in 2000, but some of the forecasts 
diverge compared to actual mortality in 2016. In 2016, the Deep_reg_hmd forecasts 
follow the actual mortality curve closely at almost all ages, while the Lee-Carter and 
auto-encoder forecasts appear too high in middle age. On closer inspection, the 
Deep_reg forecasts in 2000 are quite variable at some ages, and by 2016 have degraded 
over time and do not appear demographically reasonable, whereas the Deep_reg_hmd 
forecasts have remained demographically reasonable.

The learned embedding for age from the Deep_reg_hmd network is shown in 
Figure 19. The dimensionality of the embedding was reduced to two dimensions using 
PCA. The first dimension is immediately recognisable as the basic shape of a modern 
lifetable, which is effectively the function ax fit by the Lee-Carter model. The second 
dimension appears to describe the relationship between early childhood, late middle 
age and old-age mortality, with old-age mortality steepening as early childhood and 
late middle age mortality declines, and vice-versa.

We conclude from this brief study of mortality that deep neural networks appear to 
be a promising approach for modelling and forecasting population mortality.

Approximating Nested Stochastic Simulations with Neural Networks
Risk management of life insurance products with guarantees often requires nested 
stochastic simulations to determine the risk sensitivities (Greeks) and required capital 
for a portfolio. The first stage of these simulations involves a real-world (i.e. P-measure) 

Figure 19  Age embedding from the Deep_reg_hmd model, with dimensionality 
reduced using PCA
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simulation of the risk factors in a portfolio, such as the evolution of market factors, 
mortality and policyholder behaviour. Once the real-world scenario has been run, a 
risk neutral (i.e. Q-measure) valuation of the contracts is performed, using the real-
world baseline established in the first step as an input into the risk neutral valuation. 
This so-called “inner” step ideally consists of Monte Carlo simulations using a market 
consistent risk-neutral valuation model. Once the nested simulations have been 
performed, the risk sensitivities of the portfolio can be calculated and dynamically 
hedged to reduce the risk of the portfolio, and risk capital can be estimated by calculating 
risk measures such as value at risk or expected shortfall. A major disadvantage of 
the nested simulation approach is the computational complexity of the calculations, 
which may make it impractical for the sometimes intra-day valuations required for the 
dynamic hedging of life insurance guarantees. As a result, approximation methods such 
as Least Squares Monte Carlo, replicating portfolios or machine learning methods may 
be applied to make the calculations more practical. For more detail and an overview of 
these methods to approximate the inner simulations, the reader is referred to Gan and 
Lin (2015) and the references therein.

A recent approach uses neural networks to approximate the inner simulations for 
Variable Annuity14 (VA) risk management and capital calculations (Hejazi & Jackson, 
2016; 2017). In this section we focus on the approximation of the Greeks described 
in Hejazi and Jackson (2016), since the approximation of the capital requirements in 
Hejazi and Jackson (2017) follows almost the same process. Instead of running inner 
simulations for the entire portfolio of the contracts, in this approach, full simulations 
are performed for only a limited sample of contracts, against which the rest of the 
contracts in the portfolio are compared using a neural network adaptation of kernel 
regression, which we describe next based on Hazelton (2014).

Kernel regression is a nonparametric statistical technique that estimates outcomes y 
with an associated feature vector X using a weighted average of values that are already 
known, as follows:
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14 Variable annuities are a North American product similar to unit-linked life insurance with guarantees, 
which may cover minimum withdrawal and death benefits, amongst others.
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where K is a unimodal symmetrical probability distribution, such as a normal 
distribution, Xi is the feature vector associated with point i and h is the bandwidth, 
which determines how much weight to give to points which are distant from X. For 
the easy application of basic kernel regression, we refer the reader to the NP package 
in R (Racine & Hayfield, 2018).

The insight of Hejazi and Jackson (2016; 2017) is that kernel regression is unlikely 
to produce an adequate estimate for complex VA products, and therefore they calibrate 
a kernel function based on a one-layer neural network that is trained to measure the 
similarity of input VA contracts with those in the training set, as follows:
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where 
ihG  is a function calibrated using a neural network that measures how close 

contract i with feature vector Xi is to the contract with feature vector X. The neural 
network is set up by choosing a sample of N representative VA contracts, and an 
input contract against which the representative contracts are compared. For each 
representative contract, a feature vector describing how similar the input contract 
is to the representative contract i is calculated (for example, if the contracts share a 
categorical feature, such as guarantee type, then this component of the vector is set 
to one, otherwise it is set to zero, and, for quantitative features, such as account value, 
the relevant component of the feature vector is set to the normalised difference of the 
features) and the network’s output is a vector of weights calibrated using a soft-max 
layer that describe how similar the input and representative contracts are. For both the 
input and representative contracts, the Greeks/risk neutral value have already been 
calculated, and the network is trained to minimise the difference between the Greeks/
risk value neutral of the input contract and the weighted average of the Greeks/risk 
neutral value of the representative contracts, using the vector of weights described 
in the previous step. The vector of weights required for the adapted kernel regression 
can be calculated quickly using the trained network, thus dramatically reducing the 
calculation time for each contract.

Hejazi and Jackson (2016) report the out-performance of the neural network 
approach compared to traditional statistical approached and Hejazi and Jackson 
(2017) show that the network estimates the value of the liabilities and solvency capital 
requirements accurately.

Forecasting Financial Markets
Smith, Beyers and De Villiers (2016) attempt to apply neural networks to the 
challenging task of forecasting financial markets using lagged data, based on their 
novel approach to parameterising and training neural networks. In short, instead of 
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applying the (now) standard back-propagation algorithm (see Section 3 above) they 
apply the Resilient Backpropagation (Rprop) algorithm (Riedmiller & Braun, 1993) 
within a systematic framework for choosing the design and hyper-parameters of the 
neural networks, and use simple time-series models as benchmarks for comparing 
the performance of the neural networks on South African financial market data. One 
interesting contribution is a so-called “hybrid model” that first applies time series 
models and then fits neural networks to the residuals, which amounts to an attempt to 
apply boosting (see Friedman, Hastie & Tibshirani (2009) for more discussion) in the 
time-series context. Unfortunately, on this difficult task, the much simpler time-series 
models perform as well or better than the neural networks.

Similar results of the relatively poor performance of basic machine learning methods, 
compared to simple time-series models, when applied to time-series forecasting are 
in Makridakis, Spiliotis and Assimakopoulos (2018b). A counterpoint, though, is the 
impressive performance of a hybrid exponential smoothing-LSTM network model in 
the M4 competition (Makridakis, Spiliotis & Assimakopoulos, 2018a), as well as the 
strong performance of boosting approaches in that competition.

5. DISCUSSION, OUTLOOK AND CONCLUSION
Discussion
Section 4 of this paper has presented recent examples of the application of neural 
networks in actuarial science. In this section, we seek to distil some of the major themes 
of these applications, and place them within the wider context of deep learning.

In most of these examples, there is an emphasis on predictive performance and the 
potential gains of moving from traditional actuarial and statistical methods to machine 
and deep learning approaches. This is enabled by the measurement framework utilised 
within machine learning – models are fit on one dataset (the training dataset) and then 
measured, more realistically, on unseen data (the test dataset). The metrics used for 
these measurements, such as mean squared error, are generally familiar to actuaries 
but the focus on measuring predictive performance is perhaps less well considered 
in the actuarial literature. The focus on predictive performance does not necessarily 
come at a great cost to understanding the models, and, as shown above, the learned 
representations from deep neural networks often have a readily interpretable meaning, 
which is often not the case for shallow machine learning techniques. In the wider deep 
learning context, the focus on measurable improvements in predictive performance 
has led to many refinements and enhancements of basic deep learning architectures 
and this has propelled forward the progress of deep learning research.

Notably, in most of the examples considered above, the deep learning and neural 
network methods outperformed other statistical and machine learning approaches, 
thus, to the extent that predictive performance is the key goal for an actuary, it makes 
sense to consider deep neural networks when choosing a model. In light of this, the 
earlier assertion of this paper that actuaries should pay attention to deep learning 
appears to be bolstered by these emerging, successful applications within actuarial 
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science. Of course, the cost of applying deep learning is that these models are often 
harder to fit than simpler shallow models and one is often required to resort to 
technically complicated approaches such as greedy unsupervised learning or choosing 
a particular optimiser.

A further observation is that some of these examples focus on datasets that are more 
granular and descriptive than traditional datasets analysed by actuaries. The advantage 
of these datasets is the potential for greater accuracy in pricing and reserving, and an 
enhanced understanding of the drivers of business performance. The disadvantage, 
from the standpoint of traditional actuarial methods, is the increased complexity of 
the methods and their application.

The public availability of large, real-world datasets for research and benchmarking 
has been important in the recent progress in deep learning, and, thus, the recent 
attempts within the actuarial community to provide granular claim (Gabrielli & 
Wüthrich, 2018), IBNR triangle (Meyers & Shi, 2011) and v-a heatmap (Wüthrich, 
2018c) datasets should be recognised and applauded by the actuarial community of 
practitioners and researchers. As a case in point in the context of telematics data, the 
work of Dong et al. (2016) and Dong et al. (2017) appears to have been supported by 
the availability of a large anonymised dataset as part of a Kaggle competition, but, 
unfortunately at the time of writing, this dataset has been removed from the Kaggle 
website.

Some of the examples effectively combine deep learning together with traditional 
statistical models – the IBNR reserving study Wüthrich (2018b) shows how to 
incorporate a neural network into the traditional chain-ladder algorithm, the non-
life pricing example of Gao, Meng and Wüthrich (2018) shows how the outputs of 
unsupervised learning can be incorporated into a GLM model and Hejazi and Jackson 
(2016; 2017) show how neural networks can be adapted to enhance kernel regression. 
The combination of deep learning with statistical methods has shown promising results 
in the area of time series forecasting (Makridakis, Spiliotis & Assimakopoulos, 2018a) 
and it seems likely that more hybrid applications of neural networks will emerge in the 
near future.

A theme running throughout the deep learning literature is that neural networks 
can be designed to efficiently process and learn from different types of data. Some 
of the techniques reviewed in Section 4 are relatively straightforward applications of 
basic designs such as recurrent neural networks, auto-encoders and embedding layers, 
but new data types require some ingenuity to ensure that the neural networks can be 
trained, for example the v-a heatmaps of Wüthrich (2017) and the movement domain 
feature matrices of Dong et al. (2016). As new data sources become available to actuaries, 
the deep learning architectures described in this paper can be considered, but some 
element of new design might also be necessary. Furthermore, the application of deep 
learning to actuarial problems can be assisted with the application of, for example, the 
heuristic presented in Section 2, but novel approaches, such as unsupervised learning, 
should not be ignored.
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Outlook
The examples of Section 4 show that deep learning is a set of modern machine learning 
techniques that can enhance the predictive power of models built by actuaries, and 
provide the means potentially to extend actuarial modelling to new types of data. 
In fact, moving from traditional methods to those based on deep learning does not 
require much effort, beyond understanding the basic principles of statistical and 
machine learning, neural networks and modern machine learning software (where 
effort is required, though, is in fitting the models and interpreting them). The applica-
tion of deep learning techniques to actuarial problems seems to be a rapidly emerging 
field within actuarial science, and it appears reasonable to predict that more advances 
will occur in the near-term. Furthermore, the comparatively large element of expert 
judgement involved in designing and fitting deep neural networks fits in well with the 
frameworks developed for applying controlled expert judgement within the actuarial 
profession, such as peer review and technical standards. This emerging field of deep 
learning is, therefore, an opportunity for actuaries to become experts in the application 
of AI within actuarial science, and for actuarial associations to lead their members 
with guidance on the application of machine and deep learning techniques.

However, the challenge of non-actuary experts moving into the domain of actuaries 
should not be ignored, and the examples of the advanced telematics models from 
outside the actuarial literature discussed in Section 4 should provide a warning that 
actuaries could become less relevant as subject matter experts within insurance if 
modern techniques, such as those discussed in this research, are not soon incorporated 
into the actuarial toolkit.

Among the examples surveyed in Section 4, the high-frequency and high-
dimensional telematics data are perhaps the most foreign to actuaries trained in 
analysing structured data. It could be expected that these types of high-frequency 
data will become more common and applicable in a number of types of insurance, 
for example, data from wearable devices, autonomous vehicles or connected homes 
will likely become important in actuarial work in the future. Already, high-frequency 
location and other data are available for ships and could be incorporated into pricing 
models for marine insurance, and similar considerations apply for aviation insurance. 
Therefore, although the analysis of telematics data from human-driven cars might 
potentially be somewhat of an evolutionary dead-end within actuarial science if 
autonomous vehicles replace human-controlled vehicles, nonetheless the methods 
developed for these data are likely to be useful in other contexts.

Public availability of benchmark datasets and models would encourage more 
applications of machine and deep learning within actuarial science, and we believe 
that more actuaries should work to make these available to the actuarial community 
and that actuarial bodies should communicate these initiatives to their membership. 
Tutorials, such as Noll, Salzmann and Wüthrich (2018), that benchmark machine and 
deep learning against traditional actuarial methods contribute greatly to the body of 
knowledge accessible to the actuarial profession.



R RICHMAN AI IN ACTUARIAL SCIENCE | 55

ACTUARIAL SOCIETY 2018 CONVENTION, CAPE TOWN, 24–25 OCTOBER 2018

Having promoted deep learning in actuarial science, nonetheless, it should be 
recognised that deep learning is not a panacea for all modelling issues. Applied to the 
wrong domain, deep learning will not produce better or more useful results than other 
techniques, and, in this regard, the example of Smith, Beyers and De Villiers (2016) 
who attempted to predict the South African market with neural networks should 
be taken as a cautionary tale. Neural networks can be challenging to interpret and 
explain, but techniques to allow for interpretability, such as showcased in Dong, Yuan, 
Yang et al. (2017) and implemented in Chollet (2017) and Chollet and Allaire (2018), 
are increasingly successful at explaining what a neural network has learned. Lastly, 
deep networks can be challenging to fit and often one needs to resort to complicated 
technical approaches to achieve optimal results.

As with any technique, whether traditional or based on machine learning, actuaries 
should apply their professional judgement to consider if the results derived from deep 
neural networks are fit for purpose and in the public interest.

Conclusion
This research has presented the major ideas of machine and deep learning within the 
context of actuarial science, and provided examples of applications of deep neural 
networks to practical problems faced by actuaries in everyday practice. The code 
examples provided on GitHub accompanying this paper, together with the code in 
many of the papers cited above, should allow the interested reader to apply deep 
learning models of their own to traditional actuarial problems.

Several avenues of future research could be pursued. A clear set of benchmark 
models for actuarial problems could be established, thus making comparison of 
methods easier and more concrete. The predictive performance of specific neural 
network architectures on actuarial problems should be investigated in detail and the 
connections to traditional actuarial methods, such as credibility, could be made. Lastly, 
the professional implications of these techniques within the context of local regulatory 
environments should be considered.
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APPENDIX A
 List of Actuarial Journals

Annals of Actuarial science
ASTIN Bulletin
British Actuarial Journal
European Actuarial Journal
Insurance: Mathematics and Economics
Journal of Risk and Insurance
Scandinavian Actuarial Journal
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APPENDIX B
Abbreviations/acronyms

AI  Artificial Intelligence
CNN Convolutional Neural Network
CPU Central Processing Unit
EDA Exploratory data analysis
GAM Generalised Additive Model
GAN Generative Adversarial Model
GLM Generalised Linear Model
GLMM Generalised Linear Mixed Model
GNM Generalised Non-linear Model
GPU Graphics Processing Unit
GRU Gated Recurrent Unit
IBNeR Incurred but not Enough Reported
IBNR Incurred but not Reported
ILR Incremental Loss Ratio
LASSO Least absolute shrinkage and selection operator
LDF Loss Development Factor
LoB Line of Business
LSTM Long Short Term Memory
MAE Mean Absolute Error
MSE Mean Squared Error
NLP Natural Language Processing
PBM Poisson Boosting Machine
PCA Principal Components Analysis
PLS Partial Least Squares
RBM Restricted Boltzmann Machine
RNN Recurrent Neural Network
SOM Self Organising Map
TPL Third Party Liability


